

 Navigation

 	
 index

 	
 next |

 	pygeocodio 0.5.0 documentation

Welcome to pygeocodio’s documentation!

Python wrapper for Geocod.io geocoding API [http://geocod.io/docs/].

Features

	Geocode an individual address

	Batch geocode up to 10,000 addresses at a time

	Parse an address into its identifiable components

Read the complete Geocod.io documentation [http://geocod.io/docs/] for
service documentation.

	Installation

	Geocoding
	Single address geocoding

	Batch geocoding

	Address component parsing

	Reverse geocoding
	Single point reverse-geocoding

	Batch reverse-geocoding

	Data types
	Address

	Location

	LocationCollection

	Exceptions

 Copyright 2014, Ben Lopatin.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	pygeocodio 0.5.0 documentation

Installation

pygeocodio requires requests 1.0.0 or greater and will ensure requests is
installed:

pip install pygeocodio

 Copyright 2014, Ben Lopatin.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	pygeocodio 0.5.0 documentation

Geocoding

Single address geocoding

Import the API client and ensure you have a valid API key:

>>> from geocodio import GeocodioClient
>>> client = GeocodioClient(MY_KEY)
>>> geocoded_location = client.geocode("42370 Bob Hope Drive, Rancho Mirage CA")

The result from the Geocod.io service is a dictionary including your query, its
components, and a list of matching results:

>>> geocoded_location
{
 "input": {
 "address_components": {
 "number": "42370",
 "street": "Bob Hope",
 "suffix": "Dr",
 "city": "Rancho Mirage",
 "state": "CA"
 },
 "formatted_address": "42370 Bob Hope Dr, Rancho Mirage CA"
 },
 "results": [
 {
 "address_components": {
 "number": "42370",
 "street": "Bob Hope",
 "suffix": "Dr",
 "city": "Rancho Mirage",
 "state": "CA",
 "zip": "92270"
 },
 "formatted_address": "42370 Bob Hope Dr, Rancho Mirage CA, 92270",
 "location": {
 "lat": 33.738987255507,
 "lng": -116.40833849559
 },
 "accuracy": 1
 },
 {
 "address_components": {
 "number": "42370",
 "street": "Bob Hope",
 "suffix": "Dr",
 "city": "Rancho Mirage",
 "state": "CA",
 "zip": "92270"
 },
 "formatted_address": "42370 Bob Hope Dr, Rancho Mirage CA, 92270",
 "location": {
 "lat": 33.738980796909,
 "lng": -116.40833917329
 },
 "accuracy": 0.8
 }
]
}

This returned several geolocation results in descending order of accuracy, so
the first and most accurate geocoded location latitude and longitude can be
accessed using the coords attribute:

>>> geocoded_location.coords
(-116.40833849559, 33.738987255507)

Note

To make working with other geographic data [http://postgis.net/docs/ST_Point.html] formats easier the coords
method returns a tuple in (longitude, latitude) format.

Batch geocoding

You can also geocode a list of addresses:

>>> geocoded_addresses = geocodio.geocode(['1600 Pennsylvania Ave, Washington, DC',
 '3101 Patterson Ave, Richmond, VA, 23221'])

Return just the coordinates for the list of geocoded addresses:

>>> geocoded_addresses.coords
[(-116.40833849559, 33.738987255507), (-116.40833849559, 33.738987255507)]

Lookup an address by formatted address:

>>> geocoded_addresses.get('1600 Pennsylvania Ave, Washington, DC').coords
(-116.40833849559, 33.738987255507)

Note that to perform the key based lookup you must use the get method. This
preserves the list’s index based lookup.

Note

If one address cannot be parsed or geocoded the Geocod.io service will
still respond, but the response value for that address will be an error
message. E.g. if a query was an emptry string, the value for that
particular query would look like this:

{
 "query": "",
 "response": {
 "error": "Could not parse address"
 }
}

In this case the a lookup for “” would yield None. The None value is
not removed from the list in the LocationCollection because then the
indices in the response addresses would no longer match the indices in the
request addresses.

 Copyright 2014, Ben Lopatin.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	pygeocodio 0.5.0 documentation

Address component parsing

And if you just want to parse an individual address into its components:

>>> client.parse('1600 Pennsylvania Ave, Washington DC')
{
 "address_components": {
 "number": "1600",
 "street": "Pennsylvania",
 "suffix": "Ave",
 "city": "Washington",
 "state": "DC"
 },
 "formatted_address": "1600 Pennsylvania Ave, Washington DC"
}

The return value is simple enough to us as the returned dictionary.

 Copyright 2014, Ben Lopatin.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	pygeocodio 0.5.0 documentation

Reverse geocoding

Reverse geocoding takes a point and returns a matching address.

Single point reverse-geocoding

Reverse geocoding:

>>> client.reverse((33.738987, -116.4083))

Batch reverse-geocoding

You can also reverse geocode in batch:

>>> client.reverse([(33.738987, -116.4083), (34.288, -112.12)])

As with geocoding, there is a limit of 10,000 points you can geocode at a time.

 Copyright 2014, Ben Lopatin.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	pygeocodio 0.5.0 documentation

Data types

The client returns values represented by lightly-extended Python dictionaries
and lists. They have been extended to provide easier access to frequently
requested or primary data elements, and to make accessing data simple.

By adding only a few methods and data lookup elements the source data is
largely left as-is for developers to use as they see fit.

For example, if the data for a geocoded address returned by Geocodio includes
accuracy_type, then you access that by referencing the key, ‘accuracy_type’.:

>>> geocoded_location = client.geocode("42370 Bob Hope Drive, Rancho Mirage CA")
>>> geocoded_location.accuracy
1
>>> geocoded_location.accuracy_type
Traceback (most recent call last)
 File "<stdin>", line 1, in <module>
AttributeError: 'Location' object has no attribute 'accuracy_type'.
>>> geocoded_location['accuracy_type']
"rooftop"

Address

An Address object is just a dictionary object that provides two access methods for
returning the accuracy value of the geocoded address as an attribute and the
coordinates of the address as an attribute.

	
Address.__init__(results_list, order='lat')

	results_list is the raw data

order allows you to change the default order of the
coordinate points. Setting order to ‘lng’ or any value other
than ‘lat’ will return the points in (longitude, latitude)
order.

	
Address.coords()

	A property method that returns the coordinates of the address or None if
they are not available (in the case of a parsed address).

	
Address.accuracy()

	A property method that returns the accuracy rating of the geocoded address.

When parsing an address, the result is returned as an Address for
consistency, but the result’s usefullness will be limited to the dictionary
structure.

Location

A Location object is a dictionary object that provides the same access
methods as an Address object. Because a geocoded Location may have more than
one address returned, the methods refer to the coordinates and accuracy
respectively of the most most accurate geocoded address.

	
Location.__init__(results_dict, order='lat')

	results_dict is the raw data

order allows you to change the default order of the
coordinate points. Setting order to ‘lng’ or any value other
than ‘lat’ will return the points in (longitude, latitude)
order.

	
Location.coords()

	A property method that returns the coordinates of the best
matched address or None if they are not available.

	
Location.accuracy()

	A property method that returns the accuracy rating of the best
matched address.

LocationCollection

A LocationCollection object is a list of Location objects. It maintains an
internal dictionary of each geocoding or reverse geocoding query with reference
to the list index of the result. This allows the order of the list to be
preserved but for simple lookup of the values without needing to iterate over
the entire list.

Note

This demands an OrderedDict! Unfortunately OrderedDict was only introduced
in Python 2.7, and Python 2.6 is a targeted supported version of Python for
this project. So, boo.

	
LocationCollection.get(key)

	A method that returns a Location object from the list of locations by
checking against the query input.

The key can be the queried address as a string (geocoding) or the queried
point (reverse geocoding). The point can be provided as a tuple of floats:

(33.12, -78.123)

a tuple of float-coerceable values (e.g. a float as a string):

("33.12", "-78.123")

or a string representing the query:

"33.12, -78.123"

This method is provided instead of overriding the __getitem__ method as
the latter allows index based access to the list.

	
LocationCollection.coords()

	A property method that returns a list of all of the coordinates

 Copyright 2014, Ben Lopatin.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	pygeocodio 0.5.0 documentation

Exceptions

The Geocod.io service may respond with errors, so pygeocodio provides some
names exceptions that can be used to identify specific error types. The
Geocod.io documentation lists the following expected responses:

200 OK Hopefully you will see this most of the time. Note that this status code will also be returned even though no geocoding results were available
403 Forbidden Invalid API key or other reason why access is forbidden
422 Unprocessable Entity A client error prevented the request from executing succesfully (e.g. invalid address provided). A JSON object will be returned with an error key containing a full error message
500 Server Error Hopefully you will never see this...it means that something went wrong in our end. Whoops.

To handle these:

	An HTTP 403 error raises a GeocodioAuthError

	An HTTP 422 error raises a GeocodioDataError and the error message will be
reported through the exception

	An HTTP 5xx error raises a GeocodioServerError

	An unmatched non-200 response will simply raise GeocodioError

 Copyright 2014, Ben Lopatin.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	pygeocodio 0.5.0 documentation

Index

 _
 | A
 | C
 | D
 | G
 | L
 | T

_

 	

 	__init__() (geocodio.data.Address method)

 	

 	(geocodio.data.Location method)

A

 	

 	accuracy() (geocodio.data.Address method)

 	

 	(geocodio.data.Location method)

 	

 	Address

C

 	

 	coords() (geocodio.data.Address method)

 	

 	(geocodio.data.Location method)

 	(geocodio.data.LocationCollection method)

D

 	

 	data

G

 	

 	get() (geocodio.data.LocationCollection method)

L

 	

 	Location

 	

 	LocationCollection

T

 	

 	types

 Copyright 2014, Ben Lopatin.
 Created using Sphinx 1.3.5.

 _static/comment-close.png

_static/up.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/minus.png

_static/file.png

_static/plus.png

search.html

 Navigation

 		
 index

 		pygeocodio 0.5.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Ben Lopatin.
 Created using Sphinx 1.3.5.

modules.html

 Navigation

 		
 index

 		pygeocodio 0.5.0 documentation »

geocodio

		geocodio package
		Submodules

		geocodio.client module

		geocodio.data module

		geocodio.exceptions module

		Module contents

 © Copyright 2014, Ben Lopatin.
 Created using Sphinx 1.3.5.

_static/comment-bright.png

_static/comment.png

geocodio.html

 Navigation

 		
 index

 		pygeocodio 0.5.0 documentation »

geocodio package

Submodules

geocodio.client module

geocodio.data module

geocodio.exceptions module

Module contents

 © Copyright 2014, Ben Lopatin.
 Created using Sphinx 1.3.5.

_static/down.png

_static/up-pressed.png

